Lect. 7: Diode Circuits

Ideal diode model
PN Junction Diode

More Accurate Linear Approximation
\rightarrow Constant-voltage drop model

Typically,
$\mathrm{v}_{\mathrm{D} 0}$: 0.6-0.7V

Lect. 7: Diode Circuits

Solve the following diode circuits using the constant voltage drop model with $v_{D O}=0.7 \mathrm{~V}$.

$$
\mathrm{I}=1.72 \mathrm{~mA}, \mathrm{~V}=0.7 \mathrm{~V} \quad \mathrm{I}=0, \mathrm{~V}=5 \mathrm{~V} \quad \mathrm{I}=0, \mathrm{~V}=5 \mathrm{~V} \quad \mathrm{I}=1.72 \mathrm{~mA}, \mathrm{~V}=0.7 \mathrm{~V}
$$

Lect. 7: Diode Circuits

Plot v_{O} vs v_{l}. Use constant voltage drop (0.7 V) model.

Diode On:

$$
v_{\mathrm{O}}=0.7, v_{\mathrm{l}}>0.7
$$

Diode Off:

$$
v_{O}=v_{1}, v_{1}<0.7
$$

Diode On:

$$
v_{0}=-0.7, v_{1}<-0.7
$$

Diode Off:

$$
v_{0}=v_{1}, v_{1}>-0.7
$$

What is the function? Limiters

Lect. 7: Diode Circuits

D1 On, D2 Off: $\mathrm{v}_{\mathrm{O}}=0.7, \mathrm{v}_{1}>0.7$
D1 Off, D2 On: $v_{0}=-0.7, v_{1}<-0.7$
D1 Off, D2 Off: $\mathrm{v}_{\mathrm{O}}=\mathrm{v}_{1},,-0.7<\mathrm{v}_{1}<0.7$
D1 On, D2 On?

Lect. 7: Diode Circuits

A little more accurate model \rightarrow Piece-wise linear model

Lect. 7: Diode Circuits

Solve the following diode circuits using contstant voltage drop model with $\mathrm{v}_{\mathrm{DO}}=0.7 \mathrm{~V}$ and $\mathrm{r}_{\mathrm{D}}=20 \mathrm{ohm}$.

(a)

(b)

$$
\mathrm{I}=1.71 \mathrm{~mA}, \mathrm{~V}=0.73 \mathrm{~V}
$$

$$
\mathrm{I}=0, \mathrm{~V}=5 \mathrm{~V}
$$

Lect. 7: Diode Circuits

How about the breakdown?

Lect. 7: Diode Circuits

Lect. 7: Diode Circuits

Use the reverse breakdown region
\rightarrow Design the diode for desired V_{zo}

Lect. 7: Diode Circuits

With $r_{D}=0$
Current conduction possible if
Z_{1} is Forward $O N$ and Z_{2} is Reverse $O N$
$\rightarrow \mathrm{V}_{\mathrm{O}}=0.7+\mathrm{V}_{\mathrm{Z} 0}, \mathrm{v}_{\mathrm{I}}>0.7+\mathrm{V}_{\mathrm{Z} 0}$
Z_{2} is Forward $O N$ and Z_{1} is Reverse ON $\rightarrow \mathrm{v}_{\mathrm{O}}=-0.7-\mathrm{V}_{\mathrm{Z} 0}, \mathrm{v}_{\mathrm{I}}>-0.7-\mathrm{V}_{\mathrm{ZO}}$

Z_{1} and Z_{2} both OFF

$$
\begin{aligned}
& \Rightarrow v_{0}=v_{1} \\
& -0.7-v_{Z}<v_{0}<0.7+v_{z}
\end{aligned}
$$

With non-zero r_{D} ?

Lect. 7: Diode Circuits

Homework: Plot $\mathrm{V}_{\text {out }}$ vs. $\mathrm{V}_{\text {in }}$ for the following circuit. Use Von $=0.7 \mathrm{~V}$. What is the function of this circuit?
(Hint: Read "Full-Wave Rectifier", p. 96-99 in Razavi)

